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Abstract - This paper e"-tends an isothennal viscoplastic model proposed by the authors to include
temperature dependem:e. The underlying hypotheses are a superposition of viscoelastic and plastic
response in conjunction with thennorheologically simple behavior with temperature. Techniques
are described for using ell:perimental data to detennine the functions that define the model and these
techniques are applied to one sct of such data.

I. ISOTHERMAL THEORY

We begin with a discussion of the isothermal thcory introduccd in [II. in which the
underlying hypothesis is a supcrposition of viscoelastic illld plilstic belmvior. As in th"t
paper. we restrict ourselves to il one-dimensional theory "nd to essentially compressive
loadings. or. more precisely. to situations in which the material yields only in compression:t
this "lIows the use of a nonstandard description of plasticity in which the busic constitutivc
cquation is in ifllt'grah'c/ form.

1.1. Tht' plaSI;" port;oll of t},£' model
This portion of the model is b"scd on the constitutive eqlwtion

f. = F(1t.y). (I)

where 1; is the (comprcssive) strain. 1t the (compressive) stress. and y the yield stres.~. Here

with Yo the initial yield-stress and

7t ~ y. Yo ~ y.

F(O.yo) = o.

(2)

(3)

This constitutive equation is dispbyed graphically in Fig. I.
The e-y curve given by f. := F(y.y) is the yield envelope. This curve is eventually

traversed by loading processes with increasing stress. and. because of its importance. we
give it the special designation

Y(y) =F(y.y). y ~ Yo. (4)

For fixed y the 1:-1t curve I: = F(7t.y) represents elastic loading and unloading within the
yield envelope. We assume that each of these curves is linear. so that the corresponding
(clastic) compliance

tThe materials we discuss are rarely used in tension. where they are typically quite weak. Our theory is
easily placed in a more classical framework which allows yielding also in tension.
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Fig. I. The plastic portion of the model.

C(y) == cF(Tt.y)/CTt

is independent of Tt. For each y.

I: = F(O.y)

represents the permanent strain corresponding to y; we denote this strain by

l'(y) == 1"(O.y).

rinally. we write

M(Tt.Y) == DF(Tt.y)/Dy.

We assume throughout that

C(y) > O. M(Tt.y) > O.

(5)

(6)

(7)

(8)

(9)

The second part of (9) is the requirement that F(Tt.y) behave as shown in Fig. 2; it ensures
that the elastic loading and unloading curves do not cross. Note that, by (4), (5), (8), and
(9), Y'(y) always exceeds the corresponding elastic compliance: Y'(y) > C(y).

We now consider processes in which e(/). Tt(/) and y(/) are functions of the time I. We
assume that the material is in its virgin state at times prior to 1 = 0:

Tt(t) = O. y(t) = Yo. 1:(1) = 0 for 1 ~ 0, ( 10)

an assumption consistent with (3).
Our final step is to prescribe a now rule governing the evolution of y(t) with 1. Since

y+6.y I--------------:~
yl-----------o:o-r

~rr,y) F(rr,y+6.y)

Fig. :!. Graphical description of the assumption M(7[.Y) :> O.
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we consider yielding only in compression, net) ~ yet) with yet) nondecreasing. Moreover
yet) increases when and only when net) = yet) and n(t) is increasing, in which case net)
increases with yet). These restrictions are summarized in the flow rule:

i' = {max {1t, O}
. 0

Let 7tm (t) denote the past maximum of stress:

if n = y,

if n < y.
( II)

7tm (t) = max {7t(s):O ~ s ~ t}. (12)

Because we allow yielding only in compression. the yield condition (II) admits an alternative
expression in tenns of 7tm :

(13)

Generally this will not be true when we allow the temperature to vary.
We now derive some well known consequences of this constitutive model. These results

will be useful when we generalize the model to nOf/isothermal processes.
Using (5) and (8). we can write (I) as a rate law

f: = C(y)1t+ M(7t.y)y.

Since C is independent of 7t. from the integrability condition

DC/vy = vM/tl7t.

we deduce the existence of a function R(y) (independent of 7t) such that

M(7t,y) = 7t{vC(y)/vy} +R(y),

and this allows us to rewrite (14) in the form

e = {C(y)7t} +R(y)y.

Further. since

R(y) = M(O,y).

we m;IY conclude from (7) and (8) that

p(y) = R(y)y;

hence

e= {C(y)7t} +p(y),

which gives the total strain-rate as the sum of elastic and permanent parts.
Let us agree to call a process elastic at a given time if, at that time,

7t < y.

or both 7t = Y and 1t < i'·

Using this definition. the flow rule (11) may be written in the equivalent fonn

(14)

(IS)

( 16)

(17)

(18)

(19)

(20)

(21 )
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p(y) ~ 0 always.

p(y) == 0 whenever the process is elastic. (22)

To verify this equivalency. note first that. by (18) and assumption (9) part 2. R(y) > O. We
may therefore conclude from (19) that (22) is equivalent to the requirement that

.i· ~ 0 always.

.i· = 0 whenever the process is elastic. (23)

Assume that (22) is satisfied. If 7t < y. then the process is elastic. so that, by (23) •.i· = O.

Alternatively. if 7t = y. by (2) either Tt < .i· or Tt = .i·. In the former case the process is elastic.
so that Tt < .i· = 0: in the latter case Tt = .i· ~ O. Thus. in either case. }:. = max {Tt. OJ. This
establishes that (22) implies (II). Conversely. assume that (II) is satisfied. Then. trivially.
.i· ~ O. Assume that the process is elastic. If 7t < y. then (II) yields .i· = O. If 7t = y. then
Tt < }~ and (I I) again yields .i· = O. Thus (I I) implies (23) and hence (22). Therefore (I I)
and (22) arc equivalent.

Finally. we note that the ddinition F(7t.y) == F(7t.yo) for .I' ~ Yo ex.tends the yield
envelope to zero stress. With this definition the constitutive equation (I) is valid for .I' ~ O.

but the portion of the yield envelope f. == Y(y) for () ~ .I' ~ Yo is the initial elastic curve.
(Note that the yield envelope is then. in general. no longer smooth.)

1.2. 711(' l'isCllelaslic porlioll olllte model
We introduce rate-dependence by regarding 7t as a pseudo-strcss and relating it to the

(true) strcss (1 hy a lincar viscoelastic law:

7t(t) = f' J(t - s)d(s) ds
o

with J(t) the creep function. We assume that

J(t) is strictly increasing and uniformly bounded.

In writing (24) we assume that

/1(t) == 0 for all I ~ 0,

consistent with (10).

2. THEORY WITH TEMPERATURE DEPENDENCE

2.1. The plaslic porlioll of Ihe model
First. we generalize (I) by writing

I: = F(7t.y. T)

(24)

(25)

(26)

(27)

with T the temperature and f. the compressive strain with the strain due to thermal expansion
removed.t For a test at constant temperature T. the yield stressy has the same interpretation
as in the isothermal theory. Thus. in principle. the function F can be determined by
isothermal tests alone. As before. the yield stress must be larger than an initial yield-stress

t This assumption is quite strong as it requires the total strain he the superposition of £ and a strain due to
thermal expansion.
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y.----------::.,."e.~_",r'!(

F(rr,y,l) F(rr,y,T+~l)

Shtin

Fig. 3. Graphical description of the assumption N(lt.y. n > o.

445

.ru( T) ~ O. which we allow to depend on the temperature T: and. since f: does not include
thermal expansion. we add the requirement that

Of course. tacit in the relation (27) is the assumption that

It ~ y.

The yield envelope is now the surface in I:. y. T space given by

I: = Y(y. n.
where

Y(y. T) == F(y.y. T)

and the permanent strain p(y. T) now depends on temperature:

p(y. T) == F(O. y. T).

We assume that the functions

C == iJF/vrr. M == iJF/vy. N == vF/vT

satisfy

C > O. M > O. N > O.

(28)

(29)

(30)

(31)

(32)

(33)

(34)

with C(y. n independent of rr. an assumption which renders the elastic loading and unload­
ing curves linear under isothermal conditions. The physical meaning of (34) part 2 is as
explained for the isothermal theory (cf. Fig. 2). while (34) part 3 is the requirement that
the material soften with increasing temperature and yield more readily. as seen in Fig. 3.

Processes now consist of functions tel). rr(I). y(I). and T(t) with [cr. (28)]

x(t) = O. T(I) = To. y(t) = yo(To). c(t) = 0 for t ~ O. (35)

The constant To represents an initial temperature. which of course may vary from process
to process.

As in the isothermal theory. we use the integrability conditions
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eC/ey = eM/err, eC/eT = eN/err

to establish the existence of functions R(y. T) and H(y, T) such that

M(rr,y, T) = rr[2C(y, T)/ey} +R(y, T).

N(rr.y, T) = rr{eC(y, T)/eT}+H(y. T),

and then use these relations to write (27) in the form

i = {C(y, T)rr}+R(y, T).i·+H(y, T)t.

Since

R(y. T) = .\/(O.y, T), H(y, T) = N(O.y, T),

(32) and (33) yield

,,(y. T) = R(y. T).i·+ H(y, nt.

and

(36)

(37)

(38)

(39)

(40)

(41 )

Thus the strain rate is again the sum of clastic and permanent parts.
The chief dillkulty in dealing with a varying temperature is specifying a suitable flow

rule. Using (22) as a guide, we take as our lIow rule

p(y, T) ~ 0 always.

,,(y. T) = 0 whenever the process is elastic.

The term eilistic is still defined by (21) :

rr < y.

or both rr = y and 7t < j'.

(42)

(43)

Further. we shall refer to a process as plastic (at a given time) if it is not clastic; that is. if

rr = y and 7t = j'.

Next, note that, by (34) and (39).

R(y. n > O. H(y. T) > 0,

A(y, n == H(y, nIR(y, n

is defined. In view of (40) and (45). the rule (42) is equivalent to

j' ~ - A(y, nt always.

.i· = - A (y, n t whenever the process is elastic.

(44)

(45)

(46)

(47)
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The equation £ = ny. T). when solved for y as a function of£ and T. gives the dependence­
during yielding-of the yield stress on strain and temperature. The result (47) shows that
the yield stress can also change in the elastic range due to changing temperature; in fact.
since A > O. y decreases with increasing temperature.

The flow rule (42) has the equivalent form:

. {max {n. -A(y. T)t}
l' = .
. -A(y. T)T

if 1t = y.

if 1t < y.
(48)

which generalizes the isothermal flow-rule (l\). The proof that (42) and (48) are equivalent
is completely analogous to the proof. given in the paragraph following (22). of the cor­
responding equivalence in the isothermal theory. [Here (47) takes the place of (23).]

As before. the definition F(1t.y. T) = F(1t.Yo(T). T) for y ~ yo(T) extends the yield
envelope to zero stress; with this definition the portion of the yield envelope for
o~ Y ~ YI)(T) is the initial elastic curve. We shall not use this extension in what follows.

Consider a process which is arbitrary up to a given time 10• but which is elastic for
times t ~ to. Let Po denote the permanent strain at time 10, Then. trivially, p(y(/). T(/» = Po
for t ~ to and. integrating (41). we find that

£(1) = Po+C(y(/). T(t»1t(t) (49)

for I ~ to. As we shall sec. this result has an interesting consequence within the complete
theory including viscoel.tstic effects.

2.2. The t'iscoelastic porlion of Ihe moclel
This part of the model is changed in a straightforward manner: the pseudo-stress 1t is

still related to the stress a by a viscoelastic law. but we assume that the law is thermo­
rheologiclllly simple (d.. for example, Pipkin [2]). We thus assume there is a change in time
sc.tle ~ = ~(t) -with d~/dt a function of current temperature-such that the isothermal
law (24) remains valid if we usc reduced time ~ in place of real time I. More precisely, we
assume there is a shift function q,( T) such that if

then

~(t) =f q,(T(s» ds,

1t(t) = i' J(~(t) - e(s»d"(s) ds,
o

(50)

(51)

with J the (isothermal) creep function corresponding to a base temperature To at which
4>( To) = I, and with J consistent with (25). The constitutive equations (50) and (51) give
the pseudo-stress 1t(t) at time I as a function of the histories of stress and temperature up
to time t; for convenience, we write a' and T' for these histories and

1t(t) = 3(a', T')

for the corresponding functional relation.

2.3. The complete model
(n view of the discussion above. the complete model has the form

(52)
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e = F(n:.y. T).

. {max {n. -A(y. T)t}
l' = .
. -..l(Y. T)T

n:(t) = J(a'. T').

if n: = y.

if n: < y.

(53)

Processes now consist of functions e(l). n(/), y(l). T(/). a(t) consistent with the constitutive
equations (53) and the initial conditions

a(t) = e(t) = n:(t) = O. T(/) = To. y(/) = yo(To) for t ~ O. (54)

Because of the fonn of (52) we shall generally consider the stress a(t) and temperature T(/)
as input and the strain e(/) as output. the pseudo-stress n(/) and the yield stress yet) now
being no more than intermediate calculations.

2.3.1. Creep test. Consider a creep test at a constant but arbitrary temperature T:

a(l) = ao for all t > O.

Then. by (50) and (51).

n:(t) = (JoJ(cp(T)t).

(55)

(56)

C.lse I (Constant compliance and nonzero initial yield-stress). Assumc that thc ampli­
tudc (Jo is sulliciclltly small that (JoJ(t) ~ Yo(7') for .111 timc. so th'lt thc proccss rcmains
within the initial elastil.:-range. Then. by (49) with Po =O.

c(t)/all = CJ(cp(T)t).

f'urther. it is dear th:lt we may sc.lle 11: so as to render

C= I;

granted this is done, we find that

e(t)/ao = J(cP( T)/).

(57)

(58)

(59)

which is the st:lI1dard formula for the creep function.
Casc 2 (General case). Consider now the general case in which the compliance is not

necessarily constant, and in which the initial yield-stress may vanish. By (25) and (56), n:(t)
is increasing and bounded. Further, (49) (with Po = 0) and (30) imply that, for ao small
enough,

I;(t) = aoCCvo(T). T)J(cP(T)t) if yo(T) > O.

r.(t) = Y(aoJ(cP(T)t), T) if )'o(T) = o.

Thus. since J is bounded, we have the following approxim.ltion for small stress ao:

where

,,;(T) = C(yo(T). T) if yo(T) > o.
,,;(T) = 2 Y(y. T)lo)' at )' = 0 if yo(T) = o.

(60)

(61 )

(62)
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and where the 0(0'0) term may be dropped for y(To) > O. Equation (61)-with the 0(0'0)
term neglected and the K(D term scaled to unity-is again the standard relation for the
creep function. In general. one cannot expect to scale K( D to unity at all temperatures.
However. if we assume that the material is thermorheologically simplet for creep tests at
sufficiently small amplitude. then we are led to the conclusion that

K(D = I for all T.

and hence that

r.(t)/O'o = J(cP(DO+O(O'o).

Henceforth we rake (63) as an additional hypothesis.

(63)

(64)

2.3.2. General bcllCll"ior within the elastic range. Consider now a process in which the
material undergoes an arbitrary loading history. possibly involving yielding. and then (for
t ~ to) has pseudo-stress 1t(t) within the elastic range:

1t(t) < y(t) for t ~ to.

Let Po denote the plastic str<lin at to. Then (49) and (53) yield

l:(t)-Pn = C(y(t). T(t»~«(1I.T')

(65)

(66)

for t ~ tn. Thus the strain. me<lsured relative to the permanent strain. is given hy the usu<ll
thermorheologkally simple relation ~«(11. T') multiplied by <l correction factort C(y(t). T(t)
whieh accounts for p<lst yielding <lnd temperuture. If we <lssume that the elastic beh<lvior-­
rel<ltive to the permanent set <lnd for a given value of yield stress-is thermorheologically
simple. then the compli<lnce should be taken independent of T,

Given this, (66) redw.:es to

C(y. T) = C(y).

~:(t) - Pn = C(y(t» ~(O". T).

(67)

(68)

The current yield stress is an indication of the amount of internal damage to the material
during its past history. and for that reason we expect C(y) to increase with increasing y. If
this is so. then (68) asserts that the helwl'ior after yieltling remains themlOrheological/y
simple. bllt with stijPI/!SS appropriately reduced to account for past damage.

2.3.3. Behal"iur at transitiuns. We now study the behavior of processes at elastic-plastic
and pl<lstic-elastic transitions. What is interesting here is the possibility that a process
generated by sl/looth inputs O'(t) and T(t) will have a nonsmooth output r.(t) due to a possible
discontinuity in the yield stress y(t) at the transition.

Consider a transition which occurs at time 't. and for any function t/I(t) let [t/I] denote
the jllmp in t/I across the transition:

(69)

As mentioned above. we will limit our discussion to transitions generated by smooth inputs.

t In the sense that the reduced time accounts for all temperature elTc..'cts other than the dependence of yield
stress on temperature.

t Recall that our normali7.ation ensures that C(O. n = I.
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so that

Thus. in view 01'(50) and (51),

hence (JO) and (J I) yield

[0-] = [11 = o.

[rt] =0;

(70)

(71 )

(72)

Consider first an elastic-plastic transition. Suppose that a process which had been elastic
becomes plastic at time t. Then .i· = IT at t+. while .i· = -Atat t~; thus, since n and Tare
smooth, [.i'] = IT + A t at time t. Moreover, the only restriction on rt and tat t is that
rt ~ - A t. Thus in general U] '" 0 and we may conclude that [6] is generally nonzero.
Consider next a plastic--elastic transition: at time t the process, which had been plastic.
becomes elastic. Then the argument given above implies that U] = -rt - At. but here.
because of the yield condition (48). It = - A tat t and [r.] = O. Thus we have the following
interesting result for a transition at which the input stress and temperature are smooth. If
the transition LI' dastic-plastic. then the strain-rate i .qcnCfall.r has a jump discontinuity: if
the transition is plastic-dastic. then f: is continl/ol/s. (73)

J. CHARACTERIZATION

Here we describe. in general terms. a procedure for characterizing the response of a
material presumably modeled by this constitutive theory.

3.1. Detamination of the creep jill/Clion
First consider creep tests at several constant temperatures. We assume that the stress

h:vcl (To is sufliciently low that (64). with the D«(To) term neglected. is valid: for each T.

Since

J(tjJ(T)t) = c(t)/a o.

log (tjJ(nt) = log t+log (tjJ(T».

(74)

(75)

if c/a o is plotted against log t for each such creep test. then by translating the curves by an
.Imount log «(p(n) the curves should coincide; we can use this standard procedure for
determining the shift function cP( n.

The creep function J and the shift function cP must be available to use for the remaining
characterization procedure.

3.2. Detefminatiun of the initial elastic-cufve ancf the yielcl em'elupe
Experiments involving monotonic loading (ramp tests) at constant temperature now

sullice to determine the initi'll elastic curve e = F(n,yo. n and the yield envelope
r. = Y(n. n. Given any such test. one may use the creep law (51). characterized in Section
3.1. in conjunction with the experimental a(t) to determine 1[(1). Since a(t) is monotone. so
is n(t). Thus a plot of 1[(1) versus the experimental r.(t) reveals the form of F(·.yo. nand
y('. n at the given temperature. In principle a single experiment suffices to determine these
functions at that temperature. but a useful test of the constitutive hypothesis that the creep
law encompasses the entire rate dependence is afforded by taking a series of such tests at
differing rates and comparing the corresponding graphs.
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Because ramp tests are often inaccurate for times near the starting time of the experi­
ment. and hence for very low stress levels. the condition (63) should be a part of the
characterization procedure.

Finally. to determine the dependence of F(·. Yo. T) and Y(·. non T. this procedure is
repeated at different temperatures.

3.3. Determination of the subsequent elastic cun'es
To determine F(Tt.y. T) for Tt < Y it is necessary to have constant-temperature experi­

ments involving unloading. and. optimally. reloading. For e:<ample. loadings such as those
shown in Fig. 10 could be used but usually single-rate. dwell-less sawtooth tests with a
series of increasing peak levels are used for this purpose. From the e:<perimental u(t) one
computes Tt(t) using (51) and then considers a Tt-t; plot over each interval on which y is
constant and Tt < y. The corresponding Tt-t; plots. each for a different value of y. may be
used to construct F(Tt.y. T) at each fixed value of T. This procedure is then repeated at
different temperatures to determine the dependence on T.

4. TEST MATERIALS AND METHODS

The material studied is PBX-9502. a plastic-bonded e:<plosive. The material is 95%
tri'101inotrinitrobenzine (TATB). an organic explosive in the form of fine crystals. bound
together with 5% Kel-F 800. a plastic. namely poly(trilluorochloroethylene).

Specimens were 41.3 mm dia. by 50.8 mm long cylinders usually instrumented with
both bonded strain gages .lnd clip-on extensometers. The relatively low length-to-diameter
ratio suggests a possible problem with end-effects. However the bonded strain g.lges were
located on the specimens at the mid-point. and we used an clastic finite-clement analysis to
deduce that the measured strains would not be seriously affected by the lateral frictional
restraints on the ends of the specimen. except ncar failure. Failure loads and strains ncar
failure condition could of course be greatly influenced by the end conditions. The stntin
gages were 1/4 in. gage length bi.lxial g.lges mounted on opposite sides of the specimen.
Extensometers with 25 mill gage length were mounted stradl!ling the strain gages. The
extensometers tenl! to exhibit hysterises under reverse loading conditions. an effect that
bec;llne apparent when comparing the extensometer anl! strain g.lge results. Because of the
hysterises and the enhanced end el1'ccts with the extensometers. we customarily used the
strain gage results. In fact. all creep data were obtained using only bonded strain gages
bec;luse of space limitations in the creep apparatus.

The constant-rate-to-failure and eylic-Ioad tests were all performed on a screw-driven.
servo-controlled. eonst.lnt-rate testing machine. Early creep tests. sec Peeters[3). were done
using a lever-arm compression tester. while later tests were done in dead-weight loading
frames using a compression cage.

A d;lta acquisition system driven by a mini-computer was used to control the application
of pulsed excitation to the strain gages and then to read the bridge output signals. The
voltage readings from the bridge were stored on a floppy diskette before being transferred
to a gener.t1 purpose computer for conversion to strain values and correction for thermal
effects and finally for display and manipulation as described in the next section.

5. CONSTRUCfION AND TESTING OF A MODEL

In [I] we discussed the problem of modeling the filled polymer PBX-9502. among other
materials. with the isothermal model. As observed there. the model gives good predictions
for the material. with some shortcomings (cf. the figures below). First. there appeared to
be a small amount of rate-dependence not accounted for by the viscoelastic superposition;
second. residual strains were not very precisely predicted; and third. the assumption of
linearity in the viscoelastic portion of the model is not fulfilled. as can be seen in Fig. 12.
The predictions for creep at a higher level of stress than the characterizing level are the least
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accurate among all of the tests which were analyzed. Overall. though. it was felt that the
accuracy of the model was sufficient for most purposes. In approaching the valuation of
the model for varying tl::mperatures. these inherent problems with the isothermal model
must be kept in mind.

The data available was in the form of experimental data u(l). t:(t) for several experi­
ments at each of three temperatures. The experimental data was smoothed with spline fits.
with errors much less than the point-to-point variation of the data. The chief errors in the
creation of the model thus were caused by experimental variability. In particular. the
material showed large variations in properties from sample to sample. and the problems
involved in safely machining and testing the specimens guaranteed that the tests could not
be repeated sufficiently frequently to make a precise evaluation of these variations. Also
the temperature control in the testing was difficult. and some significant variation in
experimental values could be attributed to this.t Finally. there was an initialization problem
at the beginning of each test. which produced some scatter of values in the early data­
points.

The main source of evaluation errors was the inaccuracy. mentioned above. involved
in using creep data to approximate J.

For each of the threl:: temperatures used we obtained creep data. at stress levels of 1.0
or 1.87 M Pa. and used these to create a creep function. using a piece-wise linear fit to the
log strain versus log time plots.: A quite reliable fit over an experimental time period of
25.000 minutes was obtained by choosing a partition which corresponds in real time to the
intervals (0. 12) and (12.25000). Figure 4 shows the three creep functions plotted as log J
versus log t. It is clear that temperature-time superposition will not be precise for these
models. The values of the log J/log t slopes would be equal if this were to be the case; here
they differ by as much as 55°/'•.§ Indeed. one might expect that this simple model of
temperature vari<lbility will seldom be precisely true. (The choke or using temperature -time
superposition in the model even though it clearly is not precise was dictated by the simplicity
and computing case which it guarantees.) R:tther than try to shift the experimental data
and do a single tilling of a master curve. it was decided that it would be equally accurate
and more systematic to usc these three log-log curves to construct a master curve. Based
on the belief that the creep measurements are (experimentally) most accumte in the higher
ranges it was decided to concatenate the three graphs by successively shifting the break­
point of the higher temperature curves to the right to intersect the master graph. and then
replacing the part of the master gmph which extends beyond the intersection by the upper
part of the shifted curve. The resulting master curve is shown. with all three isothermal
curves. in fig. 4 and the shifted-master curves are contrasted with the isothermal curves in
Fig. 5. It is clear that the resulting master curve is a compromise which favors high
temperature predictions at longer times and low-temperature predictions at shorter times.
Our choice here should be adjusted to the expected demands of the use or the model. If the
model is to be used mostly in applications which involve long time dwells at low temperatures
one should make a ditlcrent choice and favor the low temperature creep function for the
ultimate continuation. The virtue of this method of tilling over tilling of shifted multiple
temperature data is that it allows a clear-cut choice. as described. and thus allows one to
predict the direction of error in applications.

Using the appropriately shifted master creep function. the virgin curve for each tem­
perature was determined by the data from a single ramp test at a medium rate (among a
choice of three rates). The resulting curves. pictured in Fig. 6. ditTered moderately and.
surprisingly. the three did not show a monotone behavior with temperature. Care was taken
in the construction of the curves to ensure that the slope was unity in a neighborhood or

t Compensation for thermal expansion removed part of the strain error due to this variation. but of course
the constitutive equations arc quite sensitive to temperature.

: This 'power-Iaw' form,lI was chosen because it gives a better-behaved extrapolation beyond the fitting
interval than other choices.

§ More precisely: if one took the mean as the master value. the 70'C value would be 35% greater than the
mean value.
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Fig, 6. Virgin response curves for PUX-950:!.

the origin. as is required by the theory. In fact, the data itselfdid not justify this adjustment;
however experimental errors at early times makes the data suspect.

For each temperature. the compliance in the damaged zone was then determined by
examining the data from a single test. having an increasing-amplitude-sawtooth stress time
history. This yielded in each case a set of strain vs pseudo-stress points; a curve was fit to
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this data for each temperature. with the results shown in Fig. 7. There was no common
pattern to the three curves and they are not monotone in the temperature.

The models constructed at each temperature were evaluated by comparing their pre­
dictions to other tests at the same temperature. The results of some of these evaluations are
shown in Figs 8-12.
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Fig. 11. Typkal multi-rate predictions for P8X-9502. 20C.

O+---,---,--..,--...,..-...,..-...,..--r-....,
050001OOOOeooo2llOOO250003000035000oIOOOO

Tme~

Fig. 12. Creep and r~'Covery test for PBX-9502. 50 C.

Figures 8 and 9 show the prediction of the model for simple ramp tests which are run
at rates which are ten times the rate of the characterizing ramp test. The predictions are
not exact. indicating a residual rate-effect. but they were felt to be acceptable. In Figs 10
and II the results for some multi-rate tests are shown; the agreement is remarkable. Figure
12 illustrates the prediction for a combined creep-stress relaxation test. The test was run at
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SOC. the temperature at which the shifted creep function was the least accurate, which by
itself introduces inaccuracy. but the large discrepancy illustrates that the inaccuracies will
be compounded for very long time intervals.

6. REMARK ON TEMPERATURE-VARYING TESTS

It was not possibh: to obtain sufficient temperature-varying tests for the material in
question to obtain useful comparisons. There are. however, some interesting effects which
arc predicted by the theory. The more interesting results occur in creep experiments; for
example. Fig. 13 shows the model's prediction for a creep test during which the temperature
is increased from a low to a high value. held at that value. and then reduced back to the
low value. lnitially the material is being damaged (the stress-strain point is on the yield
envelope) and the stntin increases in a typical creep pattern. As the temperature lowers. the
yield envelope lowers as well and. at a certain point. the stress-strain point falls below the
current yield envelope. Thereafter the material behaves elastically until the time at which
the strain increases sufficiently that the stress-strain point is on the new yield envelope
(corresponding to the current. highest. temperature). Then as the temperature is reduced.
the material continues to yield at a varying rate as the yield envelope changes with the
temperature. Similarly. Fig. 14 illustrates the model's predictions for creep with tem­
peratures increasing and decreasing slowly enough that the material is always being dam­
aged.
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7. CONCLUSIONS

The multi-temperature model was fit to the material with moderate success. The single­
temperature fitting was quite successful, but the material appears not to obey closely the
assumed temperature-time superposition rule. An approximate master creep curve led to
reasonable. but not excellent predictions for tests at various temperatures. Nonetheless. the
overall simplicity of the model and the ease of systematic and verifiable fitting makes it a
reasonable model for this material.t
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