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Abstract— This paper extends an isothermal viscoplastic model proposed by the authors to include
temperature dependence. The underlying hypotheses age a superposition of viscoelastic and plastic
response in conjunction with thermorheologically simple behavior with temperature. Techniques
are described for using experimental data to determine the functions that define the model and these
techniques are applied to one set of such data.

I. ISOTHERMAL THEORY

We begin with a discussion of the isothermal theory introduced in [1], in which the
underlying hypothesis is a superposition of viscoclastic and plastic behavior, As in that
paper, we restrict ourselves to a one-dimensional theory and to essentially compressive
loadings, or, more precisely, to situations in which the material yields only in compression ;t
this allows the use of & nonstandard description of plasticity in which the basic constitutive
cquation is in integrated form.

L. The plustic portion of the model
This portion of the model is based on the constitutive equation

&= F(n,y), H
where & is the (compressive) strain, # the (compressive) stress, and y the yield stress. Here
TSP Yo SO ]
with v, the initial yield-stress and
F(0,y0) = 0. 3)
This constitutive equation is displayed graphically in Fig. |.
The e~y curve given by £ = F(y,y) is the yield envelope. This curve is eventually

traversed by loading processes with increasing stress, and, because of its importance, we
give it the special designation

Y(») = F(y.y). ¥ 2 Yo 4)

For fixed y the ¢-n curve ¢ = F(x, y) represents elastic loading and unloading within the
yicld envelope. We assume that each of these curves is lincar, so that the corresponding
(clastic) compliance

t The materials we discuss are rarely used in tension, where they are typically quite weak. Our theory is
casily placed in a more classical framework which allows yielding also in tension.
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Fig. 1. The plastic portion of the model.
C(y) = ¢F(n, v)/in (5)
is independent of =. For each y,
e= F(0,y) (6)

represents the permanent strain corresponding to 1 ; we denote this strain by

ply) = FO, ). (7
Finally, we write
M(n,y) = 0F(n, p)/dy. 8)
We assume throughout that
C(y)>0, M(n,y)>0. )

The second part of (9) is the requirement that F(r, y) behave as shown in Fig. 2; it ensures
that the elastic loading and unloading curves do not cross. Note that, by (4), (5), (8), and
(9), Y'(y) always exceeds the corresponding elastic compliance: Y'(y) > C(3).

We now consider processes in which &(f), n(r) and y(r) are functions of the time r. We
assume that the material is in its virgin state at times prior to 1 = 0:

() =0, y()=yp, &()=0 for <0, (10)

an assumption consistent with (3).
Our final step is to prescribe a flow rule governing the evolution of y(¢) with . Since

y+oy
y

;
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Fig. 2. Graphical description of the assumption AM(n.y) > 0.




A model of viscoplastic materials 443

we consider yielding only in compression, n(f) < y(f) with y(r) nondecreasing. Moreover
»(7) increases when and only when n(r) = y(f) and =n(¢) is increasing, in which case =(r)
increases with y(r). These restrictions are summarized in the flow rule:

_ max {#,0} ifnr=y,
=0 if 7 <y. (1)
Let n,,(¢) denote the past maximum of stress:
m.(t) = max {n(s):0 <5 < ¢}. (12)

Because we allow yielding only in compression. the yield condition (11) admits an alternative
expression in terms of =,

¥() = max {yo. 7, (0)}. 13)
Generally this will not be true when we allow the temperature to vary.
We now derive some well known consequences of this constitutive model. These results
will be useful when we generalize the model to nonisothermal processes.
Using (5) and (8). we can write (1) as a rate law
E=C(p)t+M(n )y (14)
Since C is independent of x, from the integrability condition

aC/oy = IMJon, (15)

we deduce the existence of a function R(y) (independent of ) such that

M(m,y) = n{oC(y)/0y} + R(y), (16)
and this allows us to rewrite (14) in the form
£ = {C(y)m}+ R(y)y. )
Further, since
R(y) = M(0,y), (18)

we may conclude from (7) and (8) that

p(3) = R(»)y: (19)
hence

& = TCOI) +70). (20)

which gives the total strain-rate as the sum of elastic and permanent parts.
Let us agree to call a process elastic at a given time if, at that time,

n <y,

orbothr=p and # <. 2n

Using this definition, the flow rule (11) may be written in the equivalent form
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‘r}') 2 0 always,

p{¥) = 0 whenever the process is elastic. (22)

To verify this equivalency. note first that. by (18) and assumption (9) part 2. R(») > 0. We
may therefore conclude from (19) that (22) is equivalent to the requirement that

¥ = 0 always.

v = 0 whenever the process is elastic. (23)

Assume that (22) is satisfied. If 7 < v, then the process is elastic, so that, by (23), ¥ = 0.
Alternatively. if r = . by (2) either 7t < y or # = 1. In the former case the process is elastic,
so that # < y = 0: in the latter case # = y > 0. Thus, in either case, = max {#,0}. This
establishes that (22) implies (11). Conversely, assume that (11) is satisfied. Then, trivially,
¥ 2 0. Assume that the process is elastic. If r < v, then (11) yields v = 0. If = = y, then
i < yand (11) again yields » = 0. Thus (11) implies (23) and heace (22). Therefore (11)
and (22) are equivalent.

Finally, we note that the definition F(r.y) = F(rn.y,) for y <y, extends the yield
envelope to zero stress. With this definition the constitutive equation (1) is valid for y = 0.
but the portion of the yicld envelope £ = V() for 0 < v < vy is the initial clastic curve,
{Note that the yield envelope is then, in general, no longer smooth.)

1.2. The viscoelastic portion of the model

We introduce rate-dependence by regarding m as a pseudo-stress and relating it to the
(truc) stress o by a linear viscoelastic law :

n(t) = J J(t —s)a(s) dy (24)

with J(¢) the creep function. We assume that
J(r) is strictly increasing and uniformly bounded. (25)
In writing (24) we assume that
a() =0 forall <0, (26)
consistent with (10).

2. THEORY WITH TEMPERATURE DEPENDENCE

2.1, The plustic portion of the model
First, we generalize (1) by writing

e=F(r.y.T) (27

with 7" the temperature and ¢ the compressive strain with the strain due to thermal expansion
removed.t For a test at constant tempcrature T, the yicld stress v has the same interpretation
as in the isothermal thecory. Thus, in principle, the function F can be determined by
isothermal tests alone. As before, the yield stress must be larger than an initial yicld-stress

t This assumption is Quite strong as it requires the total strain be the superposition of £ and a strain duc to
thermal expansion.
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Fig. 3. Graphical description of the assumption N(n.y. T) > 0.

vo(T) 2 0. which we allow to depend on the temperature T: and. since ¢ does not include
thermal expansion, we add the requirement that

FO.vo(T).T) = 0. (28)
Of course, tacit in the relation (27) is the assumption that
n< . 29)
The yield envelope is now the surface in e, p, T space given by
e= Y, T), (30)
where
Y. T) = F(y,p. T) 3H
and the permanent strain p(y, T) now depends on temperature
p(y, T)= FO.y, 7). (32)
We assume that the functions
C=JdF/orn, M =0F/dy, N=JdF/0T (33)
satisfy
C>0, M>0, N>0, (34)
with C(y., T) independent of , an assumption which renders the clastic loading and unload-
ing curves lincar under isothermal conditions. The physical meaning of (34) part 2 is as
explained for the isothermal theory (cf. Fig. 2), while (34) part 3 is the requirement that
the material soften with increasing temperature and yield more readily, as seen in Fig. 3.
Processes now consist of functions (1), n(f), y(), and T(¢) with [cf. (28)]
() =0, T() =Ty y() =yo(Ty), () =0 for 1<0. (35)
The constant T, represents an initial temperature, which of course may vary from process

to process.
As in the isothermal theory. we use the integrability conditions
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¢C/éy = cMicn, ¢C/ICT =¢éN/in (36)

to establish the existence of functions R(y, T) and H(». T) such that

M y.T)=n{cC(y. T/ ¢y} +R(y. 1.
Ny, T) =n{éC(y. T)/ET}+H(y. T). 37)

and then use these relations to write (27) in the form

= {C.T)n} +R(. T¥+H(y. T. (38)
Since
R(».T)=M©O.».T). H(y.T)=NQO.v.T). (39)
(32) and (33) yield
p(3.T) = R(. T) ¢+ H(y. T)T. (40)
and
E={C(nTn}l +p(3. T). 40

Thus the strain rate is again the sum of clastic and permanent parts.
The chicf difticulty in dealing with a varying temperature is specifying a suitable flow
rule. Using (22) as a guide, we take as our flow rule
p(y.T) 2 0 always,

/7(7 T) = 0 whenever the process is elastic. (42)

The term elastic is still defined by (21):

n<y,

orbothrn=p and <y (43)
Further, we shall refer to a process as plastic (at a given time) if it is not elastic; that is, if
n=y and 1=y (44)
Next, note that, by (34) and (39),
R(».T)>0, H(y,T)>0, (45)
and
A(p.T) = H(y. T)/R(y.T) (46)
is defined. In view of (40) and (45), the rule (42) is equivalent to

¥ —Ay, T always,

V= —A(y,T)T whenever the process is elastic. 47
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The equatione = Y(y. T). whensolved for y as a function of e and T, gives the dependence —
during vielding—of the yield stress on strain and temperature. The result (47) shows that
the vield stress can also change in the elastic range due to changing temperature; in fact,
since 4 > 0. y decreases with increasing temperature.

The flow rule (42) has the equivalent form:

max {#. —4(y. T} ifn=y.
i = (48)

—A(y, nT ifr <y,

which generalizes the isothermal flow-rule (11). The proof that (42) and (48) are equivalent
is completely analogous to the proof, given in the paragraph following (22). of the cor-
responding equivalence in the isothermal theory. [Here (47) takes the place of (23).]

As before, the definition F(n.y. T) = F(rm. yo(T). T) for y < yo(T) extends the yield
envelope to zero stress: with this definition the portion of the yield envelope for
0 < v < »y(T) is the initial elastic curve. We shall not use this extension in what follows.

Consider a process which is arbitrary up to a given time ¢,. but which is elastic for
times ¢ 2> ¢,. Let py denote the permanent strain at time ¢,. Then, trivially, p(1(2). T(¢)) = p,
for ¢ = ¢, and. integrating (41). we find that

&(r) = pa+ C(y(0). T(D))n(s) (49)

for ¢ 2 t,. As we shall see, this result has an interesting consequence within the complete
theory including viscoelastic effects.

2.2, The viscoelastic portion of the model

This part of the model is changed in a straightforward manner : the pseudo-stress n is
still related to the stress ¢ by a viscoclastic law, but we assume that the law is thermo-
rheologically simple (cf., for example, Pipkin [2]). We thus assume there is a change in time
scale & = &(1)—with d&/dr a function of current temperature—such that the isothermal
law (24) remains valid if we use reduced time ¢ in place of real time ¢. More precisely, we
assume there is a shift function ¢(T) such that if

¢ = L (T (s)) ds, (50

r(1) = J:) J(E(1) = E())a(s) ds, (51

with J the (isothermal) creep function corresponding to a base temperature Ty at which
¢(Ty) = 1, and with J consistent with (25). The constitutive equations (50) and (51) give
the pscudo-stress () at time ¢ as a function of the histories of stress and temperature up
to time ¢; for convenience, we write o' and T for these histories and

n(1) = 30", T") (52)
for the corresponding functional relation.

2.3. The complete model
In view of the discussion above, the complete model has the form
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e= Fn.v.T),
. max {#, —A(y, DT} ifn=1y,
Y= {——A(_v. nr ifr<y.

() = 3", T). (53)

Processes now consist of functions &(r), n(r), p(r). T(¢). a(¢) consistent with the constitutive
equations (53) and the initial conditions

o(t)=e(ty=n(t) =0, T(t) =T, y({)=y,(Ty) for <0 (54)
Because of the form of (52) we shall generally consider the stress o(¢) and temperature T(¢)

as input and the strain &(¢) as output, the pseudo-stress n(z) and the yield stress y(¢) now
being no more than intermediate calculations.

2.3.1. Creep test. Consider a creep test at a constant but arbitrary temperature 7
o(t) =0, forall r>0. (55)
Then, by (50) and (51),
n(t) = a,J(H(T)). (56)
Casc | (Constant compliance and nonzero initial yield-stress). Assume that the ampli-
tude a, is sufliciently small that a,J(¢) € yo(7T) for all time, so that the process remains
within the initial elastic-range. Then, by (49) with p, = 0,
e(0)fay = CI(P(T)0). (57)
Further, it ts clear that we may scale n so as to render
C=1; (58)
granted this is done, we find that
e(t)/oo = J((T)1), (59)
which is the standard formula for the creep function.
Case 2 (General case). Consider now the general case in which the compliance is not
necessarily constant, and in which the initial yield-stress may vanish. By (25) and (56), =(¢)
is increasing and bounded. Further, (49) (with p, = 0) and (30) imply that, for a, small

enough,

(1) = 6o C(yo(T), TVH(H(T)) if yo(T) > 0,
ety = Y(aoJ(d(T)0), T) if po(T) = 0. (60)

Thus, since J is bounded, we have the following approximation for small stress o
£()foo = k(T J($(T)1) + O(a,). (61)

where

K(T) = C(yo(T). T) if yo(T) >0,
K(T)=2Y(.T)dy at p=0 if vo(T)=0. (62)
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and where the O(s,) term may be dropped for y(T,) > 0. Equation (61)—with the O(s,)
term neglected and the k(7)) term scaled to unity—is again the standard relation for the
creep function. In general. one cannot expect to scale k(T to unity at all temperatures.
However, if we assume that the matenal is thermorheologically simplet for creep tests at
sufficiently small amplitude. then we are led to the conclusion that

k(ID) =1 forall T, (63)
and hence that
e()/ae = J(@(T))+O0(a,). (64)
Henceforth we take (63) as an additional hypothesis.

2.3.2. General behavior within the elustic range. Consider now a process in which the
material undergoes an arbitrary loading history, possibly involving yielding, and then (for
t = t,) has pseudo-stress x(t) within the elastic range:

n(t) < »y(1) for 2=t (65)
Let p, denote the plastic strain at 7. Then (49) and (53) yield
&) =py = CO(O.TO)Ia". T') (66)

for 1 2 t,. Thus the strain, measured relative to the permanent strain, is given by the usual
thermorheologically simple relation Ma', T') multiplicd by a correction factor C(y(1), T(1))
which accounts for past yiclding and temperature. I we assume that the elastic behavior —
relative to the permancent set and for a given value of yield stress—is thermorheologically
simple, then the compliance should be tuken independent of T,

. T)y=CO). (67)
Given this, (66) reduces to
ety —py = Cr(N)J', T). (68)

The current yield stress is an indication of the amount of internal damage to the material
during its past history, and for that reason we expect C(y) to increase with increasing y. If
this is so, then (68) asserts that the behavior after yielding remains thermorheologically
simple, but with stiffness appropriately reduced to account for past damage.

2.3.3. Behavior at transitions. We now study the behavior of processes at elastic-plastic
and plastic-elastic transitions. What is intercsting here is the possibility that a process
generated by smooth inputs a(¢) and T'(1) will have a nonsmooth output () due to a possible
discontinuity in the yield stress p(¢) at the transition.

Consider a transition which occurs at time 1, and for any function (1) let [] denote
the jump in ¢ across the transition :

Wl=v(")—y("). (69)
As mentioned above, we will limit our discussion to transitions generated by smooth inputs,
t In the sense that the reduced time accounts for all temperature effects other than the dependence of yicld

stress on temperature.
$ Recall that our normalization ensures that C(0.7) = |.
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so that
[6] = [T] = 0. (70)
Thus. in view of (50) and (51).
(7] =0: (7
hence (40) and (41) yield
(€] = {n(CC/3») + R} [¥]. (72)

Consider first an elastic-plastic transition. Suppose that a process which had been elastic
becomes plastic at time t. Then i = #at t*, while ¥ = — AT at ¢~ ; thus, since n and T are
smooth, [#] = 1+ AT at time . Moreover. the only restriction on 7 and T at t is that
i = —AT. Thus in general [¥] # 0 and we may conclude that [€] is generally nonzero.
Consider next a plastic-elastic transition: at time t the process, which had been plastic,
becomes elastic. Then the argument given above implies that [§] = —i— AT, but here,
because of the yicld condition (48), # = — AT at r and [¢§] = 0. Thus we have the following
interesting result for a transition at which the input stress and temperature are smooth. If
the transition is elastic-plastic, then the strain-rate € generally has a jump discontinuity ; if
the transition is plastic-elastic, then £ is continuous. (73)

3. CHARACTERIZATION

Here we describe, in general terms, a procedure for characterizing the response of a
material presumably modeled by this constitutive theory.

3.1 Determination of the creep funciion
First consider creep tests at several constant temperatures. We assume that the stress
level g, is sufliciently low that (64), with the O(a,) term neglected, is valid : for each 7T,

J($(T)1) = e(1)/o,. (74)
Since
log (p(T)e) = log t+1og (¢(T)). (75)

if ¢/, is plotted against log ¢ for each such creep test, then by translating the curves by an
amount log (¢(T)) the curves should coincide; we can use this stundard procedure for
determining the shift function ¢(7T).

The creep function J and the shift function ¢ must be available to use for the remaining
characterization procedure.

3.2. Determination of the initial elastic-curve and the yield envelope

Experiments involving monotonic loading (ramp tests) at constant temperature now
suffice to determine the initial elastic curve ¢ = F(n,y,. T) and the yield cnvelope
£ = Y(n, T). Given any such test, one may use the creep law (51). characterized in Section
3.1, in conjunction with the experimental ¢(f) to determine n(r). Since () is monotone, so
is (). Thus a plot of n(¢) versus the experimental £(¢) reveals the form of F(+, vy, T) and
Y(-, T) at the given temperature. In principle a single experiment suffices to determine these
functions at that temperature, but a useful test of the constitutive hypothesis that the creep
law encompasses the entire rate dependence is afforded by taking a series of such tests at
differing rates and comparing the corresponding graphs.
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Because ramp tests are often inaccurate for times near the starting time of the expen-
ment. and hence for very low stress levels. the condition (63) should be a part of the
characterization procedure.

Finally. to determine the dependence of F(*. Y,,. T) and Y(-. T) on T. this procedure is
repeated at different temperatures.

3.3. Determination of the subsequent elastic curves

To determine F(r.y. T) for = < y it is necessary to have constant-temperature experi-
ments involving unloading. and. optimally. reloading. For example, loadings such as those
shown in Fig. 10 could be used but usually single-rate, dwell-less sawtooth tests with a
series of increasing peak levels are used for this purpose. From the experimental a(¢) one
computes n(r) using (51) and then considers a n—¢ plot over each interval on which y is
constant and n < v. The corresponding n—¢ plots. each for a different value of v, may be
used to construct F(z.v. T) at each fixed value of T. This procedure is then repeated at
different temperatures to determine the dependence on T.

4. TEST MATERIALS AND METHODS

The material studied is PBX-9502. a plastic-bonded explosive. The material is 95%
triaminotrinitrobenzine (TATB). an organic explosive in the form of fine crystals, bound
together with 5% Kel-F 800, a plastic, namely poly(trifluorochlorocthylene).

Specimens were 41.3 mm dia. by 50.8 mm long cylinders usually instrumented with
both bonded strain gages and clip-on extensometers. The relatively low length-to-diameter
ratio suggests a possible problem with end-effects. However the bonded strain gages were
located on the specimens at the mid-point, and we used an elastic finite-clement analysis to
deduce that the measured strains would not be seriously affected by the lateral frictional
restraints on the ends of the specimen, except near failure. Failure loads and strains near
failure condition could of course be greatly influenced by the end conditions. The strain
gages were /4 in. gage length biaxial gages mounted on opposite sides of the specimen.
Extensometers with 25 mm gage length were mounted straddling the strain gages. The
extensometers tend to exhibit hysterises under reverse loading conditions, an effect that
became apparent when comparing the extensometer and strain gage results. Because of the
hysterises and the enhanced end clfects with the extensometers, we customarily used the
strain gage results. In fact, all creep data were obtained using only bonded strain gages
because of space limitiations in the creep apparatus.

The constant-rate-to-failure and cylic-load tests were all performed on a screw-driven,
servo-controlled, constant-rate testing machine. Early creep tests, see Peeters[3], were done
using a lever-urm compression tester, while later tests were done in dead-weight loading
frames using a compression cage.

A data acquisition system driven by a mini-computer was used to control the application
of pulsed excitation to the strain gages and then to read the bridge output signals. The
voltage readings from the bridge were stored on a floppy diskette before being transferred
to a general purpose computer for conversion 1o strain values and correction for thermal
effects and finally for display and manipulation as described in the next section.

5. CONSTRUCTION AND TESTING OF A MODEL

In [1] we discussed the problem of modeling the filled polymer PBX-9502, among other
matcrials, with the isothermal modcl. As observed there, the model gives good predictions
for the material, with some shortcomings (cf. the figures below). First, there appeared to
be a small amount of rate-dependence not accounted for by the viscoelastic superposition ;
second. residual strains were not very precisely predicted : and third, the assumption of
linearity in the viscoelastic portion of the model is not fulfilled, as can be seen in Fig. 12.
The predictions for creep at a higher level of stress than the characterizing level are the least
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accurate among all of the tests which were analyzed. Overall. though. it was felt that the
accuracy of the model was sufficient for most purposes. In approaching the valuation of
the model for varying temperatures. these inherent problems with the isothermal model
must be kept in mind.

The data available was in the form of experimental data a(¢), £(¢) for several experi-
ments at each of three temperatures. The experimental data was smoothed with spline fits,
with errors much less than the point-to-point variation of the data. The chief errors in the
creation of the model thus were caused by experimental variability. In particular, the
material showed large variations in properties from sample to sample. and the problems
involved in safely machining and testing the specimens guaranteed that the tests could not
be repeated sufficiently frequently to make a precise evaluation of these variations. Also
the temperature control in the testing was difficult, and some significant variation in
experimental values could be attributed to this.T Finally, there was an initialization problem
at the beginning of each test, which produced some scatter of values in the early data-
points.

The main source of evaluation errors was the inaccuracy, mentioned above, involved
in using creep data to approximate J.

For each of the three temperatures used we obtained creep data, at stress levels of 1.0
or 1.87 MPu, and used these to create a creep function, using a piece-wise lincar fit to the
log strain versus log time plots.} A quite reliable fit over an experimental time period of
25.000 minutes was obtained by choosing a partition which corresponds in real time to the
intervals (0, 12) and (12,25000). Figure 4 shows the three creep functions plotted as log J
versus log ¢. [t is clear that temperature—time superposition will not be precise for these
models. The values of the log J/log ¢ slopes would be equal if this were to be the case; here
they differ by as much as 55%.§ Indeed, one might expect that this simple model of
temperature variability will seldom be precisely true. (The choice of using temperature -time
superposition in the model even though it clearly is not precise was dictated by the simplicity
and computing case which it guarantees.) Rather than try to shift the experimental data
and do a single fitting of a master curve, it was decided that it would be equally accurate
and more systematic to use these three log-log curves to construct a master curve. Based
on the beliel that the creep measurements are (experimentally) most accurate in the higher
ranges it was decided to concatenate the three graphs by successively shifting the breuk-
point of the higher temperature curves to the right to intersect the master graph, and then
replacing the part of the master graph which extends beyond the intersection by the upper
part of the shifted curve. The resulting master curve is shown, with all three isothermal
curves, in Fig. 4 and the shifted-master curves are contrasted with the isothermal curves in
Fig. 5. It is clear that the resulting master curve is a compromise which favors high
temperature predictions at longer times and low-temperature predictions at shorter times.
Our choice here should be adjusted to the expected demands of the use of the model. If the
model is to be used mostly in applications which involve tong time dwells at low temperatures
one should make a different choice and favor the low temperature creep function for the
ultimate continuation. The virtue of this method of fitting over fitting of shifted multiple
temperature data is that it allows a clear-cut choice, as described, and thus allows one to
predict the direction of error in applications.

Using the appropriately shifted master creep function, the virgin curve for each tem-
perature was determined by the data from a single ramp test at a medium rate (among a
choice of three rates). The resulting curves, pictured in Fig. 6, differed moderately and,
surprisingly, the three did not show a monotone behavior with temperature. Care was taken
in the construction of the curves to ensure that the slope was unity in a neighborhood of

t Compensation for thermal expansion removed part of the strain error due to this variation, but of course
the constitutive equittions arc quite sensitive to temperature.

$ This ‘power-law’ format was chosen because it gives a better-behaved extrapolation beyond the fitting
interval than other choices.

§ More precisely © if one took the mean as the master value, the 70°C value would be 35% greater than the
mean value.
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Fig. 6. Virgin response curves for PBX-9502.

the origin, as is required by the theory. In fact, the data itscif did not justify this adjustment ;
however experimental errors at early times makes the data suspect.

For each temperature, the compliance in the damaged zone was then determined by
examining the data from a single test, having an increasing-amplitude-sawtooth stress time
history. This yielded in each case a set of strain vs pseudo-stress points; a curve was fit to
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Fig. 8. Typical different-rate verification tests, 20 C.
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Fig. 9. Typical different-rate verification tests, 70 C.

this data for cach temperature, with the results shown in Fig. 7. There was no common
pattern to the three curves and they are not monotone in the temperature.

The models constructed at each temperature were evaluated by comparing their pre-
dictions to other tests at the same temperature. The results of some of these evaluations are
shown in Figs 8-12.
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Fig. 10. Typical multi-rate predictions for PBX-9502, 60 C.
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Fig. 12. Creep and recovery test for PBX-9502, 50 C.

Figures 8 and 9 show the prediction of the model for simple ramp tests which are run
at rates which are ten times the ratc of the characterizing ramp test. The predictions are
not exact, indicating a residual rate-effect, but they were felt to be acceptable. In Figs 10
and 11 the results for some multi-rate tests are shown ; the agrecment is remarkable. Figure
12 illustrates the prediction for a combined creep-stress relaxation test. The test was run at
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Fig. 14. Predicted creep with increasing and decreasing temperature.

50°C, the temperature at which the shifted creep function was the least accurate, which by
itself introduces inaccuracy, but the large discrepancy illustrates that the inaccuracies will
be compounded for very long time intervals.

6. REMARK ON TEMPERATURE-VARYING TESTS

It was not possible to obtain sufficient temperature-varying tests for the material in
question to obtain useful comparisons. There are, however, some interesting effects which
arc predicted by the theory. The more interesting results occur in creep experiments ; for
example, Fig. 13 shows the model’s prediction for a creep test during which the temperature
is incrcased from a low to a high value, held at that value, and then reduced back to the
low value. Initially the material is being damaged (the stress-strain point is on the yield
envelope) and the strain increases in a typical creep pattern. As the temperature lowers, the
yicld envelope lowers as well and, at a certain point, the stress-strain point falls below the
current yield envelope. Thereafter the material behaves elastically until the time at which
the strain increases sufficiently that the stress-strain point is on the new yicld envelope
(corresponding to the current, highest, temperature). Then as the temperature is reduced,
the material continues to yield at a varying rate as the yicld envelope changes with the
temperature. Similarly, Fig. 14 illustrates the model’s predictions for creep with tem-
peratures increasing and decreasing slowly enough that the material is always being dam-
aged.
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7. CONCLUSIONS

The multi-temperature model was fit to the material with moderate success. The single-
temperature fitting was quite successful, but the material appears not to obey closely the
assumed temperature-time superposition rule. An approximate master creep curve led to
reasonable. but not excellent predictions for tests at various temperatures. Nonetheless, the
overall simplicity of the model and the ease of systematic and verifiable fitting makes it a
reasonable model for this material. ¥
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